A multi-pathway model for photosynthetic reaction center.

نویسندگان

  • M Qin
  • H Z Shen
  • X X Yi
چکیده

Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the performance of a photosystem II reaction centre-based photocell† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02983g

The photosystem II reaction centre is the photosynthetic complex responsible for oxygen production on Earth. Its water splitting function is particularly favoured by the formation of a stable charge separated state via a pathway that starts at an accessory chlorophyll. Here we envision a photovoltaic device that places one of these complexes between electrodes and investigate how the mean curre...

متن کامل

Dynamically controlled protein tunneling paths in photosynthetic reaction centers.

Marcus theory has explained how thermal nuclear motions modulate the energy gap between donor and acceptor sites in protein electron transfer reactions. Thermal motions, however, may also modulate electron tunneling between these reactions. Here we identify a new mechanism of nuclear dynamics amplification that plays a central role when interference among the dominant tunneling pathway tubes is...

متن کامل

Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction.

Photosynthetic reaction centers convert the energy content of light into a transmembrane potential difference and so provide the major pathway for energy input into the biosphere. We applied time-resolved Laue diffraction to study light-induced conformational changes in the photosynthetic reaction center complex of Blastochloris viridis. The side chain of TyrL162, which lies adjacent to the spe...

متن کامل

Electron transfer in the photosynthetic reaction center.

Photosynthesis occurs via electron transfer between pigment molecules or prosthetic groups embedded in a thylakoid membrane protein complex. These pigments form the “conductive pathway” for electron flow and the surrounding protein serves as a“shaping insulator”. Electron transfer through the protein proceeds via quantum tunneling into succesively lower potential wells represented by the pigmen...

متن کامل

Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria

Absorption of light by light-harvesting complexes and transfer of electronic excitation to the photosynthetic reaction center (RC) constitute the primary light-harvesting process of photosynthesis. This process is investigated on the basis of an atomic level structure of the so-called photosynthetic unit of the photosynthetic bacterium Rhodobacter sphaeroides. The photosynthetic unit combines i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 144 12  شماره 

صفحات  -

تاریخ انتشار 2016